

Seventh National Conference on Chemistry

International Conference on Green Technologies and Environmental Protection

26 - 29 May 2011, Sofia, Bulgaria

Institute of Catalysis, Bulgarian Academy of Sciences

STUDY OF NANOSIZED FERRITE MATERIALS PREPARED BY CO-PRECIPITATION METHOD

Z. Cherkezova-Zheleva

 Why it is important to study ferrite nanomaterials

Experimental part of the presented study

Results and discussion

The study of ferrites is of great importance magnetic materials electronics catalysts **Ferrites** ceramic materials biomaterials for **medical diagnostics** and therapy

The study of ferrites is of great importance

for medical diagnostics as contrast agents

Ferrites biomaterials

for therapy

How to obtain better performance of ferrite material ?

- Ferrite preparation object of huge number of studies, but not well resolved problem ;
- Change of chemical composition ;
- Change of particle size down to nano-scale.

Methods of nano-ferrites preparation

- 1. High-energy grinding;
- 2. Wet chemical processes co-precipitation, sol-gel, hydrothermal preparation;
- 3. Plasma flame pyrolysis, electrical exposion, laser ablation, high-temperature evaporation, plasma synthesis techniques
- 4. And so on.....

Synthesis procedures

Much attention has been paid to the preparation of nanocrystalline materials, because of difficult synthesis procedures and special techniques typically used. Co-precipitation has proved to be a successful method, since co-precipitation of Fe²⁺ and Fe³⁺ in alkaline media can be performed to obtain directly the ferrite material.

Spinel structure A B₂O₄

Spinel structure

2-3 spinels: M1²⁺M2₂³⁺O₄

space group Fd3m; cubic unit cell consists of **56 atoms**: **32** anions (O^{2-}) and **24** cations ($M(1)^{2+}$ and $M(2)^{3+}$)

96 interstices between the ions: 64 tetrahedral (A) (8a, 8b, 48f) 32 octahedral [B] (16c, 16d)

only 24 interstices are occupied by cations: 8 (A) sites (8a) and 16 [B] sites (16d)

a	unit cell dimension
и	oxygen parameter
λ	degree of inversion

> V. Šepelák, F. J. Litterst, K. D. Becker, A Modified Core-Shell Model of Ferrimagnetic Oxide Nanoparticles

Co ferrite – distribution of cations over A and B sites

mixed with i = degree of inversion

$$\begin{split} \mathsf{M} &= \mathsf{M}_{\mathsf{B}}\text{-}\mathsf{M}_{\mathsf{A}} = & [3i+5(2\text{-}i)]\text{-}(5i+3\text{-}3i) = \\ &= & [10\text{-}2i] - (3\text{+}2i) = \{7-4i\} \ [\mu_{\mathsf{B}}] \end{split}$$

A. Lančok, K. Závěta, M. Veverka, E. Pollert, MÖSSBAUER STUDY OF Co AND Co-Zn FERRITES

VALENCE SEPARATION (Verwey-type) $2 M^{m+0.5} \rightarrow M^m + M^{m+1}$ (fluctuating valence state) \rightarrow (valence-separated state) Example: Magnetite Fe_3O_4 • **Inverse spinel** structure: $Fe^{III}_{tet}[Fe^{II}Fe^{III}]_{oct}O_4$ • Verwey transition at 120 K: 2 Fe^{2.5} \leftrightarrow Fe^{II} + Fe^{III} (Class III) \leftrightarrow (Class II)

Halfmetal

Magnetite (Fe₃O₄), has an inverse spinel structure, the oxygen atom forms a closed packing, and the iron cations take up the interstitial tetrahedral or octahedral positions. Electrons can jump from Fe^{2+} to Fe^{3+} at room temperature.

The presence of different ions like Mg²⁺, Co²⁺, Cu²⁺, etc., blocks this electron hopping.

The compounds magnetite (Fe_3O_4) and $Me_{0.5}Fe_{2.5}O_4$ ferrite $(Me = Mg^{2+}, Co^{2+}, Cu^{2+}, etc.)$ are members of solid solution series, which permits to synthesise samples of different electron delocalization degree.

The aim of this investigation is

- to synthesise and
- to characterise different nanosized magnetite and magnetite-type samples
 Me_{0.5}Fe_{2.5}O₄, Me²⁺=Fe, Mg, Co, Cu
- to study their physicochemical and catalytic properties with respect to different chemical composition and electronic properties.

30

Characterisation

Preparation Co-precipitation method

Solutions of $FeCl_2 \cdot 4H_2O$, $FeCl_3 \cdot 6H_2O$ and $MeCl_2 \cdot xH_2O - Me=Fe$, Mg, Co and Cu, with distilled water were prepared.

The main solutions of Fe²⁺, Fe³⁺ and Me²⁺ were mixed at a ratio of 1:4:1 and the co-precipitation process was performed by adding the alkaline solution of NaOH to the mixture.

The precipitate obtained was washed to pH=7 and dried. A black precipitate was obtained in all cases.

Sample characterisaton

- Phase composition
- Crystal structure and lattice parameters
- Particle size
- Particle shape
- Magnetic structure
- Temperature behaviour
- Catalytic behaviour

Used methods

- X-ray powder diffraction
- Mössbauer analysis
- Infrared spectroscopy
- > Thermal analysis
- **HR-TEM** with SAED
- Catalytic measurements

Thermal analysis

Ssimultaneous thermogravimetrydifferential scanning calorimetry was carried out by Linseis STA-PT1600 thermobalance in static air at a heating rate of 10°C/min .

Experimental Mössbauer analysis

The transmission Mössbauer spectra of 57Fe were taken at RT and LNT by Wissel Wissenshaftliche Electronik GMBH (Germany) spectrometer equipped with a source of 57Co in Rh matrix and working in the constant-acceleration mode. The calibration of the velocity scale was made by a standard α -Fe foil at room temperature and the isomer shift is also given with respect to this standard.

Experimental X-ray powder diffraction

TUR M62 apparatus, HZG-4 goniometer with Bregg-**Brentano geometry, CoKα** radiation and Fe filter. Data base (Powder Diffraction Files, Joint **Committee on Powder Diffraction** Standards, Philadelphia PA, USA, **1997) was used for identification of** the phases. Voigt profile was used to resolve instrumental, strain and size contributions to peak broadening.

 $W_{exp} = \alpha W_L + \beta W_G$ $D = k \lambda / W_L \cos \theta$ $e = W_G / (4 \tan \theta)$

Infrared spectroscopy

IR and far-IR spectra were recorded by a Nicolet 6700 IR spectrophotometer in KBr pellets within the 250–650–4000 cm⁻¹ range.

HR TEM SAED

A JEOL 2100 microscope has been developed to achieve the highest image quality and the highest analytical performance in the 200-kV class analytical TEM with a probe size below 0.5 nm.

Catalytic measurements

Experimental

✓ In situ diffuse-reflectance measurements (DRIFTS) on Nicolet 6700 FTIR spectrometer by high temperature/vacuum chamber (Thermo Spectra-Tech) in the region of 1111–4000 cm⁻¹ were carried out by using CaF₂ windows.

✓ The catalytic tests were performed in the reaction of CO oxidation.

Results

Preparation

Fe₃O₄

FeCl₂.4H₂O, FeCl₃.6H₂O - main solutions, alkaline solution of NaOH

 $FeCl_{2} + FeCl_{3} + NaOH \rightarrow$ $Fe[H_{2}O]_{6}^{2+} + Fe[H_{2}O]_{6}^{3+} + Na^{+} + OH^{-} + CI^{-} \rightarrow$ $Fe(OH)_{2} + Fe(OH)_{3} + NaCl + H_{2}O \rightarrow$ $[(Fe^{3+})(Fe^{2+})_{2}(OH^{-})(O^{2-})_{2}]^{2-} + NaCl + H_{2}O \rightarrow$ $Fe_{3}O_{4} \downarrow + NaCl + H_{2}O$

Results

Preparation

Cu_{0.5}Fe_{2.5}O₄

FeCl₂.4H₂O, FeCl₃.6H₂O, CuCl₂.2H₂O main solutions, alkaline solution of NaOH

Mg_{0.5}Fe₃O₄

FeCl₂.4H₂O, **FeCl_{3.}6H₂O**, **MgCl₂.6H₂O main solutions**, alkaline solution of NaOH

Co_{0.5}Fe₂O₄

FeCl₂.4H₂O, **FeCl₃.6H₂O**, **CoCl₂.6H₂O main solutions, alkaline solution of NaOH**

Chart of preparation

<u>Mössbauer study -RT</u>

Fe³⁺₂Fe²⁺O₄

HR TEM study - SAED

DSC study

<u>After DSC study – Mössbauer analysis</u>

Catalytic measurements

In situ diffuse-reflectance measurements (DRIFTS): catalytic tests were carried out in the reaction of CO oxidation.

 $2 CO + O_2 \rightarrow 2 CO_2$

Activity

Catalytic measurements

Activity

Study of acetone conversion reaction

Conclusions

- 1. The design of synthesis conditions leads to preparation of single phase spinel ferrite materials Fe_3O_4 , $Cu_{0.5}Fe_{2.5}O_4$, $Co_{0.5}Fe_{2.5}O_4$, $Mg_{0.5}Fe_{2.5}O_4$
- 2. Their particle size is nanodimensional, about 3-12 nm, and changes on varying chemical composition in the following order: $Fe_3O_4 > Mg_{0.5}Fe_{2.5}O_4 > Co_{0.5}Fe_{2.5}O_4 > Cu_{0.5}Fe_{2.5}O_4$.
- 3. Particles have spherical shape and close size distribution.
- 4. Study of the magnetic properties of prepared materials shows
 - CME behaviour of magnetite sample at RT;
 - SPM behaviour of all magnetite-type materials at RT and LNT.
- 4. Initial catalytic tests reveal their good catalytic activity and the potential to use materials as catalysts.

Thanks to all my colleagues

Prot. I. Mitov, DSc Assist. Prof. B. Kunev, Assist. Prof. N. Velinov, Assoc. Prof. G. Kadinov, Assist. Prof. M. Shopska,

Institute of Catalysis

Financial support

ACKNOWLEDGEMENT

The authors are grateful to the National Science Fund of Bulgaria for financial support through Project DO 02-295/2008.

