

Seventh National Conference on Chemistry International Conference on Green Technologies and Environmental Protection 26–29 May 2011, Sofia, Bulgaria

Comparative texture study of dried and reduced Ni/silica gel catalyst precursors for vegetable oil hydrogenation

<u>D. Nikolova¹</u>, J. Krstić³, L. Spasov¹, D. Simeonov², D. Lončarević³, M. Gabrovska¹, D. Jovanović³

¹Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia, Bulgaria

² Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia, Bulgaria

³ IChTM, Department of Catalysis and Chemical Engineering, Njegoseva 12, 11 000 Belgrade, Serbia

The catalytic partial hydrogenation of vegetable oils:

$\mathbf{C_{18}H_{30}O_2} + \mathbf{H_2} \rightarrow \mathbf{C_{18}H_{32}O_2} + \mathbf{H_2} \rightarrow \mathbf{C_{18}H_{34}O_2} + \mathbf{H_2} \rightarrow \mathbf{C_{18}H_{36}O_2}$

is widely used in the manufacture of margarines, cooking, frying and salad oils, chocolates, ice-creams, shortenings and bakery products.

Most commonly used catalyst for vegetable oil hydrogenation is metallic nickel (22–25 wt.%) supported on different natural sources of SiO_2 as diatomite, bentonite, clay minerals as well as different types of zeolites

Disadvantages of the natural SiO₂ sources

- variation of composition from batch to batch
- remarkable content of different metals as aluminum, iron and heavy metals

Silica gels as synthetic catalyst supports are an alternative to the natural silica sources because of their

- purity
- controlled pore system
- surface properties

The aim of this work is to study the texture properties after drying and after reduction-activation of Ni/silica gel catalyst precursors at two different temperatures (430 and 530°C).

These properties are important for the sorption and transport of the large triglyceride molecules.

Synthesis of precursors

Three types of silica gel (SIG) with different pore structures:

SIG-A (prepared at acidic pH)
 SIG-B (prepared at neutral pH)
 SIG-C (prepared at alkaline pH)

The precursors were synthesized with identical composition (SiO₂/Ni=1.0 corresponding to NiO content of 55.4 mass.%)

temperature = 90°C; pH = 9

The reduction-activation of the precursors was performed at two temperatures 430 and 530°C in a laboratory set-up by a "dry reduction" method with a gas mixture of H_2/N_2 (1/1 v/v) at a flow rate of 10 dm³h⁻¹.

Nitrogen adsorption-desorption isotherms of the SIG supports and dried Ni/SIG precursors

Obviously, the texture of all dried precursors is characterized by the presence of aggregates of plate-like particles having non-rigid slit-shaped mesopores as a common feature of the Ni-containing phase formed on SIG supports.

(Kaneko classification)

This aggregates may consist of $Ni(OH)_{x}(CO_{3})_{y}$ and/or $Ni^{2+}-O(OH)$ -Si entities.

Nitrogen adsorption-desorption isotherms of the reduced Ni/SIG precursors at 430 and 530°C

After the reduction-activation procedure, the isotherm shape and the type of hysteresis loop are preserved at both temperatures.

Only filling of the pores has occurred.

Sample	S _{BET} (m²/g)	V _{tot} (cm ³ /g)	V _{micro} (cm ³ /g)	V _{meso} (cm ³ /g)	d _{average} (nm)	С
SIG-A	777	(0.44)	0.28	(0.17)	2.7	179
SIG-B	581	0.83	0.21	0.83	4.9	92
SIG-C	387	0.96	0.14	0.92	` 7.3	110
Dried precursors						
Ni/SIG-A	269	(0.53)	0.10	(0.32	8.8	135
Ni/SIG-B	392	0.84	0.15	0.39	6.7	182
Ni/SIG-C	367	0.63	0.13	0,46	10.2	` <u>139</u> ⁄
Reduced at 430°C						
Ni/SIG-A	146	0.31	0.05	0.22	8.9 /	84 `
Ni/SIG-B	193	0.32	0.07	0.19	7.0	123
Ni/SIG-C	21 6	0.34	0.07	0.22	7.0	76
Reduced at 530°C						
Ni/SIG-A	101	0.24	0.04	0.19	9.5	(105)
Ni/SIG-B	227	0.33	0.08	0.18	6.7	116
Ni/SIG-C	206	0.34	0.07	0.21	7.5	(87)

C constant is proportional to the heat of adsorption and is associated with the force of interaction between adsorbent and adsorbate

 $C \sim e^{H_1 - H_1/RT}$

 H_1 - the heat of adsorption of the first adsorbate layer

H_L - the heats of adsorption of the second and the next layers
values of C<20 show a lack of monolayer formation;
values of C>100 show a strong interaction between adsorbent and adsorbate as well as presence of micropores.

CONCLUSIONS

 The texture of all dried precursors was characterized by the presence of aggregates of plate-like particles containing non-rigid slit-shaped mesopores as a common feature of the Ni-containing phase formed on SIG supports.

• The formation of the mesoporous Ni-containing phase changes the polarity of the surface in different way because of its different extent of presence and location. This phase may consists of $Ni(OH)_x(CO_3)_y$ and/or $Ni^{2+}-O(OH)$ -Si entities.

• The specific location of the Ni-containing entities in the dried nickel-silica gel catalyst precursors is preserved after the reduction-activation procedure at 430°C as well as at 530°C.

Acknowledgements

The authors are grateful to Prof. R. Edreva-Kardjieva (Institute of Catalysis, Bulgarian Academy of Sciences) for useful discussion.

The Serbian authors are grateful to the Serbian Ministry of Science (Project 45001).

Thanks for your attention