

Synthesis and Phase Composition of

Nanosized Particles in Iron-containing Silicate

Glasses

<u>R. Harizanova¹</u>, I. Gugov¹, C. Rüssel², D. Tatchev³, V. S. Raghuwanshi⁴, A. Hoell⁴

¹ University of Chemical Technology and Metallurgy, Sofia, Bulgaria ² Friedrich-Schiller-Universität, Jena, Germany

³ Institute of Physical Chemistry, Sofia, Bulgaria

⁴ Institute of Applied Materials, Helmholtz Zentrum Berlin, Germany

Polymer-coated nanosized superparamagnetic crystals, S. Odenbach, J. Phys.: Cond. Matt. 16 (2004) 1135.

Scheme of reader with interface between sensor chip and computer, T. Aytur et al. / Journal of Immunological Methods 314 (2006) 21.

<u>Aims of the Work:</u>

- ✓ Investigation of the glass formation in the system $Na_2O/SiO_2/MnO/Fe_2O_3$.
- Synthesis of glasses and nanosized superparamagnetic glassceramics in the studied system.
- Establishment of the influence of chemical composition on the phase composition and the microstructure of the obtained glass-ceramics.
- Characterization of the phase composition of the precipitated nanocrystals.
- Magnetic measurements on precipitated nanocrystals.

Investigated system and synthesis conditions

Investigated system

 \succ

 $(1-x)(16Na_2O/10MnO/74SiO_2)/xFe_2O_3$ for x = 0.05÷0.30

Raw materials: Na₂CO₃; MnCO₃; SiO₂; Fe₂O₃ or FeC₂O₄

Synthesis conditions: SiO₂ crucible, MoSi₂ furnace, 1400–1450°C, 0.5–2.5 h, quenching between Cu blocks, annealing at 480°C for 10 min after pouring in a preheated C mould.

Crystallisation by applying different temperature/time regimes in order to precipitate nano-sized ferrimagnetic crystals.

Characterization methods

Phase composition and microstructure

- X-ray diffraction analysis;
- SEM/TEM analysis.

Additional phase composition investigation

- Anomalous small angle x-ray scattering (ASAXS).

Magnetometry

- Vibration magnetometer

Results: phase composition and microstructure

<u>X-ray diffraction</u>

– <u>SEM imaging</u>

XRD patterns of reduced samples **13,6Na₂O/8,5MnO/62,9SiO₂/15,0Fe₂O_{3-y} heat-treated at 600°C for different time: formation of mixed crystals MnFe₂O₄ (A) and Fe₃O₄ (B).**

SEM (SE) image of C-covered sample with 15 mol% Fe_2O_{3-} v, crystallized for 10 h at 550°C.

SEM (SE) image of C-covered sample with 15 mol%Fe₂O_{3-w} annealed for 24 h at 600°C.

Results: microstructure and average particle

SEM (SE) image of C-covered sample with 15 mol% $Fe_2O_{3-\gamma}$ and 8,5 mol% MnO, annealed for 3h at 550°C.

Particle size distribution for a sample annealed at 550° for 3 h.

Results: ASAXS – elemental composition and average particle size

1) <u>SAXS</u> on samples annealed for <u>40 min for 3 h at 550°C</u> showed formation of nanocrystals with <u>sizes</u> <u>from 14 to 44 nm</u>, respectively. **6)** From <u>ASAXS data</u>: the formation of both <u>Fe and Mn</u> enriched nanoparticles leads to formation around them of a Fe, Mn depleted viscous shell.

2) <u>ASAXS effect</u> is observed near the <u>absorption edges</u> of both <u>Fe and Mn.</u>

Mn, Fe depleted shell

Mn, Fe containing layer

5) ASAXS data also suggests:

rising concentration of Mn in the vicinity of the growing Ferich core causes heterogenous nucleation and growth of Mn,Fe-containg spinel layer.

3) <u>ASAXS</u> data curves interpretaion suggests formation of nearly shperical core-shell particles, containing Fe, Mn and O.

4) ASAXS predicts:

Initially formation of a Fe-rich homogenously nucleating and further growing spinel phase core.

Results: magnetic measurements

Magnetization vs. external magnetic field for a sample with 15 mol% Fe_2O_{3-y} , annealed at 540°C for 3 h. Magnetization vs. external magnetic field for a sample with 15 mol% Fe_2O_{3-y} , annealed at 600°C for 24 h.

Summary of the results

Nanosized spinel phase of the type (Mn, Fe)^{II}(Fe,Mn)^{III}₂O₄ is precipitated in the investigated compositions up to 600°C.

For crystallization time over 3 h, for all temperatures, the average size of the formed nanocrystals is about 50 nm and hardly changes with time. The precipitation of the spinel nanosized phase is kinetically constrained.

- The chemical composition of the obtained nanoparticles as studied by ASAXS shows formation of Fe-Mn-O-based core-shell structures in which the core is enriched in Fe and the shell is depleted in both Fe and Mn.
 - The magnetic properties of the precipitated nanocrystals vary from paramagnetic to superparamagnetic, depending on the applied time-temperature annealing programs.

Thank you for your attention!

DSC Results

Magnetization versus Temperature

Sample 540C/3h

Sample 600C/24h

ASAXS curves

ASAXS effect at the Mn-absorption edge

ASAXS effect at the Fe-absorption edge